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Dynamic Density: An Air Traffic Management Metric

I. V. LAUDEMAN, S. G. SHELDEN, * R. BRANSTROM,* AND C. L. BRASIL*

Ames Research Center

Summary

The definition of a metric of air traffic controller workload
based on air traffic characteristics is essential to the devel-
opment of both air traffic management automation and air
traffic procedures. Dynamic density is a proposed concept
for a metric that includes both traffic density (a count of
aircraft in a volume of airspace) and traffic complexity (a
measure of the complexity of the air traffic in a volume of
airspace). It was hypothesized that a metric that includes
terms that capture air traffic complexity will be a better
measure of air traffic controller workload than current
measures based only on traffic density.

A weighted linear dynamic density function was developed
and validated operationally. The proposed dynamic density
function includes a traffic density term and eight traffic
complexity terms. A unit-weighted dynamic density func-
tion was able to account for an average of 22% of the
variance in observed controller activity not accounted for
by traffic density alone.

A comparative analysis of unit weights, subjective
weights, and regression weights for the terms in the
dynamic density equation was conducted. The best
predictor of controller activity was the dynamic density
equation with regression-weighted complexity terms.

Introduction

Providing system flexibility to the user is an important
goal in advanced air traffic operations (RTCA, 1995). It is
expected that automation to support air traffic manage-
ment, accompanied by changes in air traffic procedures,
will result in increased system flexibility. The develop-
ment of a metric that predicts controller workload as a
function of air traffic characteristics in a volume of
airspace is essential to the development of both air traffic
management automation and air traffic procedures.

The dynamic density metric proposed here includes both
traffic density (a count of aircraft in a volume of airspace)
and traffic complexity (a quantitative description of the air
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traffic complexity in a volume of airspace). The general
form of the proposed equation is as follows:

DD W TC TD CIi i
i

n
= + +

=
∑

1

where DD is dynamic density, TC is the ith traffic
complexity factor, W is the ith factor weighting, i is the
number of traffic complexity factors, TD is traffic density,
and CI is the air traffic controller intent.

It was hypothesized that the proposed metric, which
includes air traffic complexity, will be a better measure of
air traffic controller workload than current measures based
only on traffic density.

The proposed dynamic density metric is likely to be the
most useful if it can be implemented in an operational
environment where it can be used to provide real time
information about the complexity of air traffic. The
requirement that the dynamic density measure be computed
real time gave rise to the most important constraint in the
development of the dynamic density function.

A real-time computation of traffic complexity requires the
use of radar track data as input to the dynamic density
function. The weakness of this approach is that there is no
way to differentiate between similar kinds of radar track
data that result from very different kinds of controller
intent.

A specific action taken by the air traffic controller could,
in general, have several possible motivations and, depend-
ing on the motivation of the controller, an observed action
could have a range of workload values. For instance, the
information that an aircraft is changing altitude can be
extracted from radar track data and weighted for its contri-
bution to the traffic complexity in a sector. However, an
air traffic controller can have a variety of reasons for
issuing a clearance to an aircraft to change its altitude and
that variation in intent could result in a variation in the
controller workload associated with the observed action.

The dynamic density metric proposed here is designed to
capture only the observed changes in the air traffic in a
sector as quantified by the TD and TC terms of the
dynamic density equation. Identifying and validating
values for the controller intent term (CI) in the dynamic
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density equation would be difficult in a controlled experi-
mental setting and virtually impossible in an operational
environment. Therefore, the work presented here addresses
only the traffic density and traffic complexity terms of the
equation. If the dynamic density values derived without
intent information can be shown to capture a substantial
amount of the variance in observed controller activity,
then it is possible that the dynamic density function
would be useful without including the controller intent
term.

The approach in the development of the proposed dynamic
density metric was as follows:

1. Identification of air traffic complexity factors that
might meaningfully capture traffic complexity in a
volume of airspace and that could be computed from
radar track data.

2. Construction of a dynamic density equation that
included unit-weighted terms for traffic density and
traffic complexity.

3. Validation of the dynamic density equation in an
operational environment.

4. Generation of subjective and multiple regression
weights for the traffic complexity factors in the
dynamic density equation for comparative analysis
with the unit-weighted dynamic density equation.

Traffic Factor Selection

The traffic factors included in the dynamic density equation
were selected based on an informal interview process with
subject matter experts.

Participants

The participants were three currently qualified air traffic
controllers from the Oakland Air Route Traffic Control
Center (ARTCC) and two former air traffic controllers
working on site at Ames Research Center.

Procedure

 The air traffic controllers participated in informal
interviews in which candidate traffic complexity factors
were identified. The choice of factors was constrained by
the requirement that the factors be able to be computed in
real time using radar track data or information that could
be derived from radar track data such as predicted conflicts.

Results

Eight traffic factors were identified as candidates for air
traffic complexity factors. The identified factors were of
three types: dynamic factors that captured changes such as
aircraft speed or heading (factors 1–3); aircraft density

factors that captured the variability in the distribution of
aircraft in a sector (factors 4 and 5); and conflict factors
that captured predictions of aircraft conflicts (factors 6–8).

The two aircraft density variables were essentially the
same factor computed for two distance ranges. The
thinking was that the impact on the controller might vary
as a function of distance and therefore two ranges should
be considered. There were three predicted conflict terms
identified, as exploring multiple distance ranges was also
thought to be important for these terms.

The traffic complexity factors identified were as follows:

1. Heading Change (HC)– The number of aircraft that
made a heading change of greater than 15 degrees
during a sample interval of two minutes.

2. Speed Change (SC)– The number of aircraft that had a
computed airspeed change of greater than 10 knots or
0.02 Mach during a sample interval of two minutes.

3. Altitude Change (AC)– The number of aircraft that
made an altitude change of greater than 750 feet
during a sample interval of two minutes.

4. Minimum Distance 0–5 n. mi. (MD 5)– The number
of aircraft that had a Euclidean distance of 0–5 n. mi.
to the closest other aircraft at the end of each two
minute sample interval. This measure does not
include converging aircraft that are predicted to be in
conflict. Predicted conflicts are accounted for in other
traffic factors. The Euclidean distance was computed
as the shortest distance between two aircraft whose
positions were defined by values in the x, y, and
z dimensions.

5. Minimum Distance 5–10 n. mi. (MD 10)– The
number of aircraft that had a Euclidean distance of
5–10 n. mi. to the closest other aircraft at the end of
each two minute sample interval, excluding conflict
aircraft.

6. Conflict Predicted 0–25 n. mi. (CP 25)– The number
of aircraft predicted to be in conflict with another
aircraft whose lateral distance at the end of each two
minute sample interval was 0–25 n. mi. The lateral
distance was computed as the shortest distance
between two aircraft whose positions were defined by
values in the x and y dimensions.

7. Conflict Predicted 25–40 n. mi. (CP 40)– The
number of aircraft predicted to be in conflict with
another aircraft whose lateral distance at the end of
each two minute sample interval is 25–40 n. mi.
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8. Conflict Predicted 40–70 n. mi. (CP 70)– The
number of aircraft predicted to be in conflict with
another aircraft whose lateral distance at the end of
each two minute sample interval is 40–70 n. mi.

Dynamic Density Function

An a priori decision was made to evaluate a linear
combination of traffic density and traffic complexity
factors. The dynamic density equation was as follows:

DD W HC W SC W AC W MD

W MD W CP W CP

W CP TD

= ( ) + ( ) + ( ) + ( )

+ ( ) + ( ) + ( )

+ ( ) +

1 2 3 4
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8

5
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The dynamic density equation was programmed into the
Center TRACON Automation System (Erzberger, 1992)
as a selectable function with adjustable factor weighting
capability. HC, SC, AC, MD 5, and MD 10 values were
found using aircraft trajectory information computed from
radar track data, flight plan, and weather information.
CP 25, CP 40, and CP 70 values were found using the
CTAS Conflict Prediction capability (Isaacson and
Erzberger, 1997).

The CTAS system was operated in an Air Traffic
Management Laboratory at Ames using an air traffic data
feed from the Denver ARTCC. Dynamic density was
computed using a two minute sample interval for selected
air traffic control sectors. The dynamic density function
output file included a Zulu time stamp, sector number,
dynamic density values, and separate values for each of the
traffic complexity factors. The dynamic density output
files were used to generate plots of dynamic density as a
function of time (fig. 1).

The aircraft count function in figure 1 represents the traffic
density in the sector during a four hour period. The
dynamic density function represents the traffic density
term plus the unit-weighted traffic complexity terms of
the dynamic density equation. Where the traffic density
function rises slowly at some points in time, the dynamic
density function appears to rise more rapidly, suggesting
that the dynamic density function might be able to
characterize aspects of the air traffic not captured by the
traffic density alone. If the two curves had a more nearly
identical shape it would be less likely that the added
complexity terms would be able to capture traffic com-
plexity information not already captured in the traffic
density term.

Dynamic Density and 
Traffic Density Functions
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Figure 1. Traffic density and unit-weighted dynamic
density functions for four hours of operation recorded at
Denver ARTCC Sector 17.

While the difference between the dynamic density and
traffic density functions was promising, it was not an
adequate demonstration of the usefulness of the added
complexity terms in the dynamic density equation. A
validation of the equation with operational data was
required. An independent measure of observed controller
workload was needed to evaluate the relative merits of the
dynamic density and air traffic complexity terms and to
compute differential weights for the air traffic complexity
terms.

What was required was an independent measure of
controller workload that could be collected concurrently
with dynamic density data. The limitations on the choice
of the independent workload measure were (1) that it not
interfere in any way with the activity at an operational
sector and (2) that it measure only observed actions as
opposed to the mental state of the controller. The non-
interference requirement was due to the safety concerns
related to collecting data in an operational air traffic
control facility. As noted earlier, the CI term of the
dynamic density equation was not considered in this study.
One implication of the elimination of the CI term is the
limitation of the workload measure to observable
behavior.
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Operational Validation

Validation Measure

Observations of air traffic controller activity at the radar
(R-side) position of an en route sector was selected as an
acceptable independent measure of controller workload as
it met both the noninterference and observability criteria.

A representative subset of R-side activities was needed, as
it was not feasible to collect real-time observations of
every activity performed by the R-side controller. An
approach that included the specification of a subset of
activities was used in Vortac, Edwards, and Manning
(1994) where recorded streams of time-stamped air traffic
controller behaviors and communication events were used
to examine the actions of individual and paired controller
teams. The authors attempted to balance the need to
describe “all relevant aspects of controller activities,”
without the list becoming too large, while still ensuring
that each category of behaviors was “mutually exclusive
and exhaustive.”

An alternative approach would have been to videotape
operations and transcribe exhaustive activity counts from
the tapes. It is, however, unlikely that video taping would
have been allowed on the operational floor of an ARTCC
due to the possibility of operational interference. Also,
recording a high quality video tape in the darkened
environment of an en route center was problematic.

A set of representative activities was selected from a
review of past research in the area of air traffic controller
workload. A number of activities that have been shown to
correlate significantly with air traffic controller workload
have been identified in studies of controller activity
(Buckley et al., 1983; Stein, 1985; Mogford et al., 1995).

Buckley et al. (1983) found an average of 16% of the
variance in workload was accounted for by predicted
aircraft conflicts and 13% by communication factors.
Mogford et al. (1995) found 28% of the variance in sector
complexity was captured by predicted conflicts and 38%
by frequency congestion. Stein (1985) found that regres-
sion of local aircraft density, heading change, and
outbound hand-off on workload produced a multiple
R2 = 0.73.

From the variables identified, eight air traffic controller
activities were selected for use in the dynamic density
metric validation study. The selected activities included
radio communications activities and radar scope related
activities.

1. Zoom In/Out– Controller changes the radar scope
field of view. Typically the controller will zoom out
and then return the field of view to its normal setting.
This constitutes a single event.

2. Trend Line– Manipulation of a single trend line, or a
global change to all displayed trend lines. Typically,
the controller will extend a single aircraft’s trend line,
assess the aircraft trajectory, and then remove the
trend line. This constitutes a single event.

3. Conflict– Flight Data Blocks (FDB) of two aircraft
flash, indicating a potential conflict. This is a timed
event. The first key press starts the timer. When the
conflict stops flashing, the second key press stops the
timer.

4. Route Line– Controller displays an aircraft filed route
of flight. This constitutes a single event.

5. Minimum Separation Ring– Activation of a mini-
mum separation ring. This is a timed event. The first
key press starts the timer. When the minimum
separation ring is deactivated by the controller, the
second key press stops the timer.

6. ATC Communication– Any controller-initiated
communication with an aircraft, together with the
aircraft response. This constitutes a single event.

7. Say Again– A controller who misses a communi-
cation will issue a sectorwide communication,
“aircraft calling center, say again.” This constitutes
a single event and is not also recorded as an ATC
Communication.

8. Pilot Communication– Any pilot-initiated
communication with the controller together with the
controller response. This constitutes a single event.

9. Incorrect Readback– Any aircrew error in reading back
ATC instructions. This constitutes a single event.

Dynamic Density Validation Study

Participants

The participants were air traffic controllers who were
observed while performing their normally assigned duties
at the R-side position of Sectors 9, 16, 17, and 28 of the
Denver ARTCC.

Activity Observation Data Collection

Activity observations were recorded on laptop computers
by single observers sitting immediately behind and to the
side of the R-side controller at the sector. A total of four
observers were used in the study. Observers collected
activity observations with the Activity Catalog Tool
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(ACT). The ACT is a tool designed to assist in the collec-
tion of activity observations (Segal and Andre, 1993) and
is shown in figure 2. The ACT output files included time
stamps that could be synchronized with dynamic density
file time stamps and activity labels. A count of activity
events recorded during each two minute sample interval
was used as the controller workload measure. Communi-
cations were recorded by pairs (e.g., aircraft to controller
and controller response) but were counted as two com-
munications for the purposes of the workload analysis.

Figure 2. Activity Catalog Tool for collection of workload
observations.

Observer Reliability

Observer reliability was assessed using a percentage
agreement method (Shaughnessy, 1994). Observer agree-
ment was established with observational data collected at
Sector 33 of the Oakland ARTCC prior to the study at the
Denver ARTCC. Sector 33 was chosen because it is one
of the busiest sectors in the Oakland ARTCC airspace.
Observer reliability was established in a pairwise process
in six 45 minute data collection sessions. The inter-
observer percent agreement ranged from 84.9 to 95.9
across all pairs for all data collection periods. The matrix
of observer percent agreement values is shown in table 1.

Table 1. Pairwise observer percent agreement values for
the four observers who collected activity observation
data.

1 2 3 4

Observer 1 92.8 92.3 95.9

Observer 2 93.8 84.9

Observer 3 86.8

Procedure

The CTAS system with conflict detection functionality
was installed on the operational floor of the Denver
ARTCC where it was configured to compute dynamic
density values for Sectors 9, 16, 17, and 28 at two minute
sample intervals for the duration of each data collection
period. The conflict probe parameters were set to predict
conflicts at a lateral separation of 10 miles or less and
vertical separation of less than 2000 feet above FL 290
and less than 1000 feet below FL 290 with a 20 minute
time horizon.

Air traffic controller activity observations and dynamic
density data were collected concurrently in eighteen
0.5–2 hour data collection periods for a total of 24.5 hours
on Sectors 9, 16, 17, and 28 at the Denver ARTCC.
Sectors 9, 16, 17, and 28 are high altitude sectors that
generally contain a mix of arrival, departure, and
overflight traffic. The data were collected during the
morning and evening high traffic periods. A sample of
unit-weighted dynamic density data, traffic density data,
and activity count data is shown in figure 3.

Dynamic Density Sector 28 
Sept.10, 1997 (AM)

Dynamic Density/Activity   r=.77
Traffic Density/Activity     r=.59
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Figure 3. Sample of unit-weighted dynamic density, traffic
density, and activity observation data collected at Denver
ARTCC Sector 28.

Results

The correlation (Pearson r) and variance (r2) values for
dynamic density with activity (DD/ACT) and traffic
density with activity (TD/ACT) were computed for the
unit-weighted data collected during each of the data
collection periods and are shown in table 2.
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Table 2. Correlation and variance values computed from
unit-weighted dynamic density, traffic density, and
observed activity data collected during each of the
18 data collection periods.

Period Sector DD/ACT TD/ACT

r r2 r r2

1 16 0.83 0.68 0.77 0.60

2 17 0.35 0.12 0.29 0.08

3 28 0.77 0.60 0.59 0.35

4 16 0.79 0.62 0.61 0.37

5 28 0.72 0.52 0.65 0.43

6 16 0.63 0.40 0.55 0.30

7 17 0.79 0.63 0.69 0.48

8 16 0.72 0.52 0.32 0.10

9 17 0.45 0.20 0.49 0.24

10 28 0.67 0.45 0.16 0.03

11 16 0.80 0.64 0.73 0.53

13 28 0.77 0.59 0.73 0.53

14 9 0.95 0.90 0.89 0.79

15 9 0.64 0.40 0.37 0.14

16 9 0.64 0.41 0.28 0.08

17 9 0.86 0.75 0.68 0.48

18 9 0.60 0.36 0.21 0.04

Dynamic density correlated more highly with observed
controller activity than did traffic density for 17 of the
18 data collection periods. There were also four collection
periods (8, 10, 16, and 18) during which traffic density had
little correlation with activity, whereas dynamic density
had moderate to high correlation. These data are promis-
ing, as they indicate a robustness of the traffic complexity
terms in their ability to capture added variance in control-
ler activity across different sectors and times.

The data were collapsed across sector and collection period,
and correlation and variance values were computed for the
full data set as follows:

mean r

mean r

(ACT/DD) (ACT/DD)
2

(ACT/TD) (ACT/TD)
2

= =

= =

0 74 0 55

0 57 0 33

. .

. .

r

r

The dynamic density equation with unit-weighted traffic
complexity factors was able to account for an average of
55% of the variance in controller activity, where the traffic
density term alone accounted for an average of 33% of the
variance in controller activity.

While the correlational analyses were able to show that
the set of complexity terms appeared to contribute sub-
stantially to the variance in controller activity accounted
for by dynamic density, it was not clear that all eight of
the complexity terms accounted for equal amounts of the
total variance. It was also unclear whether any of the
complexity terms were redundant. A traffic complexity
term intercorrelation matrix was computed to identify
shared variance or redundancy among the terms (table 3).
Ideally, the terms would be roughly orthogonal and thus
have minimal intercorrelations. The traffic complexity
terms all had very low intercorrelations with the exception

Table 3. Intercorrelation matrix of traffic complexity values.

CP 25 CP 40 CP 70 CA CH MD 10 MD 5 CS

CP25 1.0 0.083 0.269 0.074 0.179 0.053 0.102 0.114

CP 40 1.0 0.052 0.069 0.033 0.109 0.027 0.036

CP 70 1.0 0.019 0.099 0.074 0.089 0.102

CA 1.0 0.171 0.033 0.084 0.502

CH 1.0 0.171 0.172 0.189

MD 10 1.0 0.257 0.150

MD 5 1.0 0.165

CS 1.0
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of the Altitude and Speed Change terms for which
r = 0.502. Some intercorrelation was expected for these
two terms, as an altitude change is often accompanied by
a speed change.

Traffic Factor Weighting

Multiple Regression Weighting Analysis

A multiple regression analysis was conducted to determine
whether there was justification for differentially weighting
each term in the dynamic density equation. A split-half
multiple regression analysis was conducted in which half
the data set was used to identify regression weights and
the other half was used to test the identified regression
weights. The database of activity observations and
dynamic density values included 729 cases, of which
364 were used to compute regression weights and 365
were used to test the regression weights.

Factor weights were computed in a multiple regression
analysis in which traffic density and all the traffic com-
plexity factors were forced into the equation. The dynamic
density factors, the computed normalized weights (B), and
the statistical significance (Sig T) of each factor weight
are shown in table 4. The B weights are normalized with a
mean of zero and a standard deviation of 1. The statistical
significance of each weight was computed with a T test
that compared the mean of the computed weight with a
zero mean.

The heading change term (HC) received the highest
weight, which can be explained by the fact that there
was significant arrival traffic in all the sectors that were
observed. The headings on these aircraft changed as they
were vectored to their arrival gates, thus contributing
significantly to the heading change term.

Two of the conflict prediction terms (CP 40, CP 70) also
received substantial weights. The weights on these two
terms were the same (1.85), suggesting that dividing the
conflict space by current range of aircraft might not have
been necessary.

One measure of the local density (MD 10) of aircraft in
portions of the sector also received a significant weight.
If the local densities occur near sector boundaries, the
communication counts are likely to increase, as all the
closely clumped aircraft are likely to be checking in and
out of the sector at the same time thus increasing
communication counts for those sample intervals.

Two terms in the regression equation had weights that
were approaching the accepted 0.05 significance level:
number of aircraft changing altitude (AC) with 0.08 and

Table 4. Regression factor weights with statistical
significance values.

Traffic density

Regression

B T Sig T

0.79 5.79 0.00

Traffic factors

Regression

B T Sig T

HC 2.17 3.06 0.00

SC 0.15 0.34 0.73

AC 0.88 1.78 0.08

MD 5 1.02 1.84 0.07

MD 10 1.18 3.94 0.00

CP 25 0.10 0.14 0.89

CP 40 1.85 2.59 0.01

CP 70 1.85 2.85 0.00

number of aircraft with current distance to closest other
aircraft of 0–5 n. mi. (MD 5) with 0.07. Typically, the
inclusion of extra terms whose weighting might be low
or redundant is of less concern than the loss of terms that
might carry important portions of the variance. Therefore,
the two terms AC and MD 5 were provisionally included
in the equation, pending further studies that might more
clearly include or exclude them.

The two factors whose computed regression weights were
small and substantially nonsignificant were the count of
aircraft changing speed (SC) and the count of aircraft in
conflict with a current range less than 25 n. mi. (CP 25).
These two terms were removed from the equation that was
used to compute dynamic density.

It is possible that the low weighting of the speed factor is
an artifact of the types of sectors that were analyzed. This
term might capture a significant amount of the variance
in observed activity in a low altitude sector with a large
proportion of arrival traffic. There are typically a high
percentage of aircraft changing speed in arrival sectors as
they slow down for final approach to an airport. The
generalization of this and the other factor weights to
different types of airspace is, in any event, an empirical
question that remains to be answered.
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The nonsignificance of the conflict prediction term for a
current range of 0–25 n. mi. is possibly the result of its
relatively low base rate, as two converging aircraft are
relatively unlikely to close to less than 25 n. mi. of each
other in an airspace in which all aircraft are under radar
control.

The final form of the dynamic density equation with
multiple regression weights was as follows:

DD HC CP CP

MD MD AC

TD

= + +

+ + +

+

2 17 1 85 40 1 85 70

1 02 5 1 18 10 0 88

0 79

. ( ) . ( ) . ( )

. ( ) . ( ) . ( )

. ( )

Subjective Weighting Analysis

An alternative approach to the use of regression weights is
the use of subjective weights collected from survey data.
The use of subjective weights addresses the possibility
that air traffic controllers might be able to provide more
accurate weights for traffic complexity terms when asked
explicitly than can be obtained by the observational
methods used above.

Survey data were collected to provide differential
weighting values for the eight traffic complexity factors.
The traffic density term was assumed to have a weighting
of 1.0. The traffic complexity factor weightings were
collected for individual aircraft present in an en route
sector. For factors such as MD 5 and CP 25 where two
aircraft are involved, the weighting was applied separately
to each of the aircraft involved.

Participants

The participants were 65 currently qualified air traffic
controllers from the Oakland ARTCC.

Procedure

Each participant filled out a survey form in which he or
she was asked to give ratings for each of the eight traffic
complexity factors. Survey forms were provided to the
air traffic controllers through the National Air Traffic
Controllers Association (NATCA) office of the Oakland
ARTCC. Traffic complexity factor weighting values were
collected using a Likert scale, with minimum and
maximum values defined as follows:

•  Workload (1) is the amount of work required to accept
and then hand off a single aircraft that requires no
additional controller services during a period of
average traffic level in a sector that you normally
work.

•  Workload (5) is the amount of work required to pro-
vide services to the most demanding nonemergency
user that you encounter during a period of average
traffic level in a sector that you normally work.

Results

The mean and standard deviation of the subjective
weighting values computed for the eight traffic factors are
shown in table 5. The relatively high standard deviation
values (e.g., CP 70 mean = 2.11, standard deviation =
1.02) suggest that the mean subjective weight values
contain so much individual variation that they are not
likely to provide robust results when used in the dynamic
density equation.

Table 5. Subjective traffic factor weight mean and
standard deviations. Regression factor weights with
statistical significance values.

Traffic density

Subjective Regression

Mean SD B T Sig T

1.0 0.00 0.79 5.79 0.00

Traffic factors

Subjective Regression

Mean SD B T Sig T

HC 2.40 0.88 2.17 3.06 0.00

SC 2.45 0.92 0.15 0.34 0.73

AC 2.94 0.98 0.88 1.78 0.08

MD 5 2.45 1.23 1.02 1.84 0.07

MD 10 1.83 0.99 1.18 3.94 0.00

CP 25 4.00 1.09 0.10 0.14 0.89

CP 40 3.00 1.06 1.85 2.59 0.01

CP 70 2.11 1.02 1.85 2.85 0.00

The dynamic density equation with subjective weights was
as follows:

DD HC SC AC MD

MD CP CP

CP TD

= + + +

+ + +

+ +

2 40 2 45 2 94 2 45 5

1 83 10 4 00 25 3 00 40

2 11 70 1 00

. ( ) . ( ) . ( ) . ( )

. ( ) . ( ) . ( )

. ( ) . ( )
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Comparative Analysis of Subjective and
Regression Weights

Dynamic density values were computed for the 365 test
cases using the normalized regression weights, the
subjective weights, and unit-weighted traffic complexity
factors in the dynamic density equation.

The correlations of observed air traffic controller activity
with dynamic density values computed with unit-weighted
traffic complexity factor values, subjectively weighted
traffic complexity factor values, and regression-weighted
traffic factor values were as follows:

r

r

r

(Activity/DD unit weighted)

(Activity/DD Subjective Weights)

(Activity/DD Regression Weights)

=

=

=

0 67

0 65

0 71

.

.

.

 The dynamic density equation using factor weights
computed from the multiple regression analysis was the
strongest predictor of observed air traffic controller
activity. The variance in observed activity accounted for
by the multiple regression dynamic density equation was
0.50, or 50%, on average. The implication here is that
50% of the variance is not accounted for by the dynamic
density equation.

One of the likely possibilities for controller behavior that
was not captured by the dynamic density equation was
communication related to pilot requests for ride reports.
During poor weather conditions, it was common for
virtually every aircraft to request a ride report upon
entering a sector. The added communication load for the
controller was not reflected in any of the dynamic density
terms since it did not result in changes that were reflected
in the radar track data.

Conclusions

The correlation of dynamic density with observed
controller activity was consistently higher than correla-
tions of traffic density with observed controller activity
across the various data collection periods. These data
support the conclusion that the traffic complexity terms of
the dynamic density equation are robust in their ability to
capture more of the variance in controller activity than the
traffic density term alone.

When the data were collapsed across sector and collection
period, the overall unit-weighted dynamic density factors
accounted for 22% of the variance in observed controller
activity that was not accounted for by traffic density alone.
These data support the hypothesis that the eight proposed
traffic factors (or some subset of these factors) can better
account for increased controller workload due to
complexity in sector traffic.

The multiple regression dynamic density equation was a
better predictor of controller activity than the subjectively
weighted dynamic density equation. The multiple regres-
sion equation was able to account for 50% of the total
variance in air traffic controller activity in the set of test
cases, suggesting that the dynamic density equation has
some generalizability across operational conditions.

The multiple regression analysis identified statistically
significant weights for four of the eight proposed traffic
factors, with two additional factors approaching signifi-
cance. It would be premature, however, to remove any of
the proposed traffic complexity terms from consideration
until the proposed dynamic density equation has been
tested in a variety of operational settings.



10

References

Buckley, E. P.; DeBaryshe, B. D.; Hitchner, N.; and
Kohn, P.: Methods and Measurements in Real-Time
Air Traffic Control System Simulation.
DOT/FAA/CT83/26, Atlantic City, NJ, 1983.

Erzberger, H.: CTAS: Computer Intelligence for Air
Traffic Control in the Terminal Area. NASA
TM-103959, 1992.

Isaacson, D.; and Erzberger, H.: Design of a Conflict
Detection Algorithm for the Center TRACON
Automation System. Proceedings of the 16th Digital
Avionics Systems Conference, Irvine, CA, 1997.

Mogford, R. H.; Guttman, J. A.; Morrow, S. L.; and
Kopardekar, P.: The Complexity Construct in Air
Traffic Control: A Review and Synthesis of the
Literature. DOT/FAA/CT-TN95/22, Atlantic City,
NJ, 1995.

Shaughnessy, J.; and Zechmeister, E.: Research Methods
in Psychology. McGraw-Hill: New York, 1994,
pp. 100–107.

Segal, L. D.; and Andre, A. D.: Activity Catalog Tool
(ACT) v 2.0 User Manual. NASA CR-177634, 1993.

Stein, E.: Air Traffic Controller Workload: An Examina-
tion of Workload Probe. DOT/FAA/CT-TN84/24,
Atlantic City, NJ, 1985.

RTCA: Report of the RTCA Board of Directors
Select Committee on Free Flight. RTCA, Inc.:
Washington, DC, 1995.

Vortac, O. U.; Edwards, M. B.; and Manning C. A.:
Sequences of Actions for Individual and Teams of Air
Traffic Controllers. Human-Computer Interaction,
vol. 9, 1994, pp. 319–343.



REPORT DOCUMENTATION PAGE

8.  PERFORMING ORGANIZATION
     REPORT NUMBER

10.  SPONSORING/MONITORING
       AGENCY REPORT NUMBER

Form Approved

OMB No. 0704-0188

12b.  DISTRIBUTION CODE12a.  DISTRIBUTION/AVAILABILITY STATEMENT

7.  PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

4.  TITLE AND SUBTITLE 5.  FUNDING NUMBERS

6.  AUTHOR(S)

1.  AGENCY USE ONLY (Leave blank)

9.  SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

2.  REPORT DATE 3.  REPORT TYPE AND DATES COVERED

15.  NUMBER OF PAGES

16.  PRICE CODE

20.  LIMITATION OF ABSTRACT19.  SECURITY CLASSIFICATION
       OF ABSTRACT

18.  SECURITY CLASSIFICATION
       OF THIS PAGE

17.  SECURITY CLASSIFICATION
       OF REPORT

14.  SUBJECT TERMS

13.  ABSTRACT  (Maximum 200 words)

Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std. Z39-18
298-102

NSN 7540-01-280-5500

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information.  Send comments regarding this burden estimate or any other aspect of this
collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for information Operations and Reports, 1215 Jefferson
Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

11.  SUPPLEMENTARY NOTES

Unclassified Unclassified

Unclassified — Unlimited
Subject Category  03

A-98-10366

NASA/TM—1998-112226

April 1998

Ames Research Center
Moffett Field, CA 94035-1000

National Aeronautics and Space Administration
Washington, DC  20546-0001

538-18-22

15

A03

Dynamic Density: An Air Traffic Management Metric

I. V. Laudeman, S. G. Shelden,* R. Branstrom,* and C. L. Brasil*

The definition of a metric of air traffic controller workload based on air traffic characteristics is essential
to the development of both air traffic management automation and air traffic procedures. Dynamic density is
a proposed concept for a metric that includes both traffic density (a count of aircraft in a volume of airspace)
and traffic complexity (a measure of the complexity of the air traffic in a volume of airspace). It was hypoth-
esized that a metric that includes terms that capture air traffic complexity will be a better measure of air
traffic controller workload than current measures based only on traffic density.

A weighted linear dynamic density function was developed and validated operationally. The proposed
dynamic density function includes a traffic density term and eight traffic complexity terms. A unit-weighted
dynamic density function was able to account for an average of 22% of the variance in observed controller
activity not accounted for by traffic density alone.

A comparative analysis of unit weights, subjective weights, and regression weights for the terms in the
dynamic density equation was conducted. The best predictor of controller activity was the dynamic density
equation with regression-weighted complexity terms.
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